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Abstract. A class of unitary transformations of reflective character is proposed for multi- 
mode quantum transport systems. The simplest of these is discussed in detail. To optimise 
the transformation parameters, a new variational principle is introduced which is based 
on the definition of a positive definite 'measure of non-diagonality' for each state. The 
optimised transformation removes the leading order of non-diagonality in the phonon 
coupling strength D (from Do to D-2 for D2>> 1 and from D2 to D4 for D2<< 1). In this 
manner the basic shortcoming of quantum diffusion systems, which is the dominating 
non-diagonality between energetically far-off states, is drastically reduced. 

1. Introduction 

Phonon-assisted quantum transport has been theoretically studied by many workers 
(Holstein 1959, Pirc et a1 1966, Dick 1968, 1977, Flynn and Stoneham 1970, Sander 
and Shore 1971, Kagan and Klinger 1974, Wagner 1979, Teichler and Seeger 1981, 
Kuhn and Wagner 1981, Junker and Wagner 1983). In all these attempts a procedure 
has been chosen, which directly or indirectly amounts to a golden rule (GR) description 
of the transportive transition rates. 

However, the straightforward application of the Fermi GR in quantum transport 
problems raises some serious questions. Firstly, it should be remembered that any 
kind of decay in quantum mechanics very sensitively depends on the choice of the 
initial state. It is the spectral breadth of the projection of the initial state onto the 
exact eigenfunctions which defines the decay constant. In optical problems frequently 
the initial state can be prepared as a single eigenstate of some zero-order Hamiltonian 
H,, which is the starting prerequisite for the GR description. However, in quantum 
transport problems an experimental preparation of this kind is not achievable. There- 
fore, theoretically one eventually has to revert to an initial state in the sense of a Kubo 
formalism. 

Secondly, a basic presupposition of the GR is the requirement that the transition 
matrix elements between energetically far-distant states of H,, do not strongly exceed 
those between equi-energetic ones. However that is just not warranted in quantum 
diffusion. 

Thirdly, there is a strange hierarchical peculiarity in phonon-assisted particle 
transfer problems. It is a fact that first-order (and all odd-order) results display a 
Debye-Waller screening, whereas second-order (and all even-order) results do not, 
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1916 M Wagner 

whence for strong enough particle-phonon coupling second-order may exceed first- 
order. Since theoretical decay evolves from a combination of first- and second-order, 
the question arises of whether Debye-Waller screening is partially absent in the decay 
constant. 

In a previous paper (Wagner 1984a), henceforth referred to as I, a Kubo response 
approach to the occupational decay has been presented. In this approach the occupa- 
tional decay is characterised by an oscillatory transport coefficient wo and a damping 
constant To. It has been shown in I that the Fulton-Gouterman transformation (1961) 
has a fundamental bearing on quantum transport and allows for exact general state- 
ments about the transport quantities wo, To. It is proven that in the limit of a small 
transitive parameter A both wo and To depend linearly on A. It is further shown that 
the temperature behaviour of wo, To is different in the one-, few-, and many-mode 
cases ( N  >> 1). 

As regards the many-mode case ( N  >> 1) which, of course, is the physically most 
relevant one, it turned out that the hierarchical property Dk - N-"' of the phonon 
coupling constants Dk (mode k) has a great impact on the results. Thus, it was 
shown in I that the linear A-behaviour of To is of order N-'  and accordingly fades 
away in the limit N >> 1. This fact is somewhat pleasing, since a linear A-behaviour 
would have been a demanding overthrow of the commonly accepted behaviour To - A'. 
Since in the transport path considered in I there was no direct influence of second-order 
perturbation theory onto To, it was suspected that a possible A*-behaviour would result 
from a combination of first- and third-order perturbation theory, and the general 
formula for this effect was given. Yet an explicit calculation had the outcome that the 
suspected kind of A2-behaviour of To again is only of order N-I.  

Now, in I we have considered only those state combinations { m}"'- { n } ( - )  between 
the two Fulton-Gouterman quasi-continua for which the phonon quantum numbers 
are identical, m'k" = ni- ' .  It is clear, however, that in the same spectral region we also 
have those state combinations for which the phonon numbers are only globally 
conserved, Zk m"' = x k  n(-' .  It is these additional combinations which provide the 
decisive spectral breadth T - A'. However, in the multimode case, a perturbative type 
of calculation beyond first-order is not achievable, whence an alternative diagonalisa- 
tion procedure is desirable. It is the purpose of this article to introduce a reflective 
type of a unitary transformation, which is to be applied to the residual vibrational 
problem ensuing from the Fulton-Gouterman transformation, and which displays good 
diagonalisation properties. 

2. Two-site model and Fulton-Gouterman transformation 

For lucidity we consider a two-site model (see I )  with the Hamiltonian 

where the phonon Hamiltonian is taken in the form ( h  = 1) 

and where a spin-; description is employed for the two sites of the tunnelling particle 
(U= = $ ( c : c ,  - c l c , ) ,  ux = $ ( c : c , + c : c , ) ,  cy = + i ( c T c 2 - c l c l ) ) .  It is this model which 
may be viewed as the archetype of a theoretical model describing phonon-assisted 
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transport and has been studied by many researchers (Holstein 1959, Pirc et a1 1966, 
Dick 1968,1977, Flynn and Stoneham 1970, Sander and Shore 1971, Kagan and Klinger 
1974, Wagner 1979, Teichler and Seeger 1981, Kuhn and Wagner 1981, Junker and 
Wagner 1983). 

We want to consider a many-mode system N >> 1 ( N  = number of lattice modes), 
where the tunnel-phonon coupling constants Dk are of order N-1’2, but such that 

whereas 

C 0; = O( N-1).  
k 

Hamiltonian ( 1 )  may be diagonalised with respect to the pseudospin subsystem by 
means of the symmetrised ansatz 

$(p)  = 2-”2[11)@.‘p’( Q )  +p12)G@.‘P’(Q)], p = * l  (4) 

where 11) and 12) denote the two spin states (i.e. the ‘two sites’ of the tunnelling particle), 
a,ll) = ll)/2, ~7~12) = -12) /2 ,  and where G(Pk, Qk) is a reflection operator, 

GQk = - QkG, G 2 =  1 ,  G + = G  (5a)  

G W Q )  = @ ( - Q ) ,  ( 5 b )  

which may be taken in the explicit form 

Ansatz (4) is equivalent to the Fulton-Gouterman transformation H = U;GHUFG, 
where 

U ~ ~ = 2 - ~ ’ ~ [ ~ + i a , ] ( l - G ) + 2 - ’ ’ ~ [ ( + , + o ; ] ( l +  G). (7)  

For more details about the background of this tranformation we refer to the original 
work of Fulton and Gouterman (1961) and to two recent papers of the author (Wagner 
1984b, c). In this manner the original Schrodinger equation is reduced to the vibrational 
eigenvalue problems 

H‘p’@{g,( Q )  = E{:)@:$)( Q ) ,  p = * l  (8) 

where {m} is the N-tuple of vibrational quantum numbers {m} = {ml ,  m2, . . .}, and 
where 

In a Kubo (1957) description of transport the migration of a particle from one site 
to the other is given by the occupational decay function (see I ) :  
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Z being the partition function, 

In this manner all characteristic transport quantities can be derived from the knowledge 
of the set of vibrational eigenfunctions @I:\ and eigenvalues El:\. 

3. Debye-Waller peculiarity 

For simplicity we consider the one-mode version of (8), 

[ f R ( P 2 +  Q 2 ) +  DQ]+fpAG]@$'= m m .  (14) 

The zero-order (A = 0) eigenfunctions of this equation are the displaced oscillator 
functions 

(15) I m )  = @E'( Q + 0/2) 

with eigenvalues 

E',"' = n ( m  +;) 

and the first-order correction yields 

(17) E(P,l) = 1  A 
m 2~ (mlGlm). 

The reflection operator G affects the displaced oscillatory functions in the following way 

GI m )  = (-  1)"'@',"'( Q - D/2) ,  (18) 

whence (ml GI m )  are oscillatory overlap integrals ('Franck-Condon' integrals; namely 
e.g. Wagner 1959), 

+a2 

( - l )"(mlGln)= I @k'(Q+ D/2)@?' (Q-D/2 )  dQ. (19) 
-m 

Specifically we have 

(- l)"(ml G ( m )  = exp( -D2/4)L0,( D 2 / 2 )  (19a)  

(-l)"'+'( m/  GI m + 1) = -D[2( m + 1)]-'12 exp( -D2/4)L!,,( D2/2)  (19b) 

( - l )" - ' (m(G(m - 1) = D(2m)-'I2 ~ X ~ ( - D ~ / ~ ) L ! , , - ~ ( D ~ / ? )  ( 1 9 ~ )  

( -1)" - ' (m+l~G(m-l )" - l )" ' ' ' (m-1~G(m+l)  (19d) 

(m(GI0) = D"(2"n1!)-'/~ exp(-D2/4) (19e) 

= (02 /2 ) [m(m + I ) ] - " ~ L ~ - ~ ( D ~ / ~ )  
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where L",(z) is the Laguerre polynomial 
m 

L",z)= (-l)n ( : : : ) $ 9  Lo,= L,. 
n =o 

To obtain a simple hint for the device of a non-perturbative procedure (unitary 
transformation) we calculate the second-order correction to the ground-state energy, 

where formula (19e) has been used. Employing now 

zn 
n .  n !  Ei(z) = y + l n  z +  - for z > 0, 

-1 - e [ I  + z - '+o (z -~ ) ]  for z >> I ,  

where Ei(z) is the exponential integral and y the Eulerian number, we have 

EF',2' = - (h2/2aD2)[  1 + O( D-2)] for D2 >> 1. 

The total second-order ground-state result thus reads 
ELP) = E(O)+L 2pA ~X~(-D~/~)-(A~/~RD~)[~+O(D-~)]+O(A~). 

The strange peculiarity of result (21) is that the first-order term displays a Debye-Waller 
screening exp( - D2/4), whereas the Debye-Waller screening is absent in second-order. 

For our further understanding it is even more elusive to consider the first-order- 
corrected ground-state eigenfunction 

OF' = @.bo'( Q + D/2)  + A@?) (25) 

where 

A@P)=p-exp(-D2/4) A @k)(Q+D/2)- ( - D)m+O(A2) 
2 a  m(+O) mJlnl Ji 

and where use has been made of formula (19e). The weight of the addition A@hp) is 
given by the scalar product 

2 

(A@hp)lA@bp')= (&) exp(-D2/2) -&(D')m+O(A3) (27) 
m(#o)  m m !  2 

which by use of relation (22) in the strong coupling case D >> 1 can be shown to have 
the asymptotic form: 

(A@$"IA@,bP') = (A/2Cl)2(D2/2){1 +O[exp(-D2/2)]}+O(A3) (28) 

which again displays the fading away of Debye-Waller screening. A@?' is located 
around Q = +D/2,  which can be seen by projecting it onto @.b"'(Q-D/2), 

(A@ol@g)( Q - 0 / 2 ) )  = p- A exp(-D2/2) - ("')" - +O(A2) 
2i2 m(#o)  m .  m !  2 
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where again use has been made of formula (19e). In the limit D2 >> 1 this reads 

(A(DF)l@P)(Q- D / 2 ) )  =p(A/2fl)(D2/2)-’{l +O[exp(-D2/2)]}+0(A2) (30) 

which is the square root of (28). We thus conclude 

In this manner it turns out that Aa0 is a diminished (by a factor A/D2n) ,  but not a 
Debye-Waller screened mirror image of the zero-order wavefunction. It is this result 
which makes it suggestive to introduce the unitary transformation which is used in the 
next section. In passing we note that result (31) can be extracted from the work of 
Shore and Sander (1973), although they have not stated it in this explicit form. 

4. A general reflective transformation 

Since in the multimode case straightforward perturbation theory requires the handling 
of intricate combinatorial problems both for the eigenvalues as well as for the eigenfunc- 
tions of (8), we have to seek for other means to solve this eigenvalue problem beyond 
the first order. It turns out that unitary transformations can be devised by means of 
which we can achieve the solution of (8) to arbitrary degrees of accuracy. We only 
consider the most simple class of these, which is characterised by the unitary operator 

where A,(P, Q) is a real odd (‘ungerade’) and A K (  P, Q )  a real even (‘gerade’) Hermitian 
function of the operators Pk, Q k ,  

and we introduce the notation 

A =[ (A,+ iAK)(A, - iA , ) ] ”2  = - [ A t + A i + i [ A K ,  A,11”2. 

(35) 

(36) 

The unitary operator (32) then assumes the form 

U = cos A+A-‘(sin A)S. (37)  

If any specific choice of the functions A,, A, turns out to be a suitable one, the diagonal 
part of the transformed Hamiltonian U + H ‘ P ) U  will be a good representative of H‘p’, 
which is tantamount to the statement that @{om))( Q k  + Dk/2) is a ‘good’ eigenfunction 
of U + H C P ’ U ,  
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and hence 
@(P) - U@'"' 

{ m } -  {m)(Qk+Dk/2) 

= (COS A)@t?)( Qk Dk/2) + (-1)2kmk((ii-1 Sin A)(AU+ihs)@ym))( Qk - & / 2 )  
(38b) 

is a good eigenfunction of H(p) itself. From this expression we recognise that the 
transformation adds to the original oscillatory function which is localised around 
Qk = -Dk /2 ,  a second term which is localised around Qk = Dk/2. It is this fact which 
has been the motivation for introducing the transformation, since the perturbative term 
W (namely, equation ( l o b ) )  also has the property of adding a mirror image contribution 

to the wavefunction. 
The most straightforward way of performing a transformation is by means of the 

commutator expansion 

T : A =  U + A U = A + ( l / l ! ) [ A ,  S ] + ( 1 / 2 ! ) [ [ A ,  SI, SI+. . . . ( 3 9 )  

This yields for our Hamiltonian constituents 

T:H'"=HL+HD 

+ $ p h  G + ( HL + HD) ( A, + i A,) G - (A,  + i A,) G ( HL + HD) 

- phh, 4- ( 1 / 2 ! ) [ (  HL+ HD)A2 A2( HL+ H,) 

+2(A,+iA,)(HL+ H,)(A,-ih,)]+third-order terms (40) 

from which we recognise that all first-order matrix elements by virtue of the reflection 
operator G will be of an overlap nature and thus display Debye-Waller screening, 
whereas in the second-order terms the reflective operator, and hence Debye-Waller 
screening, is absent. Another characteristic which is worth noting is the fact that by 
virtue of [ W, A,] = 0 there is no second-order offspring of W from A,. Hence, if A, = 0 
and if the parameters of A, would have to be fixed in a variational way, there would 
be no second-order stabilisation of these. 

5. The simplest reflective transformation 

Henceforth we discuss in more detail the simplest of the class ( 3 3 )  of transformations, 
which is given by 

( f f k  real), which amounts to the choice 

Au=C f f k Q k ,  A, = 0. ( 4 2 )  

T 1 P i  = P i  - 2iffkPkG -k ff i (43a) 

T : Q ; = Q ;  (43 b 1 
T :  Qk=(COS2A,-sin2huG)Qk ( 4 3 c )  

T :  G = cos 2A,G -sin 2 A ,  (43d)  

k 

The transformation of the basic operators in is then given by 
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with its one-mode version 

= $l(P'+ Q2+ DQ - 2 iaPG + a*)  

+fDRQ[cos 2 a Q +  (sin 2aQ)GI  

+ipA[(cos 2aQ)G-s in  2aQ1. 

It now might seem that it is a hopeless venture to calculate matrix elements of the 
multi-mode Hamiltonian (44). But this in fact turns out to be more easy than in the 
single-mode case, if one makes recourse to the hierarchical statements (3a, 6). We 
demonstrate this procedure for the matrix element ({ m}lP,G({ m} ) ,  where 

The general prescription then will be to neglect all powers beyond the second of each 
single D k ,  since these eventually will lead to summations of the form (36) and hence 
to contributions of order ( l / N ) .  Applying this rule to (46), in the k ' Z  k terms we 
may introduce the replacement 

L,, ( ~ 2 / 2 )  = 1 - mk'D$/2 + O( D",) = exp(-$mk,D$) + o ( D ~ , , )  

and in the k term 

f o r k ' #  k (47) 

In this manner integral (46) is simplified to 

In a similar way we find the other relevant overlap integrals 
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where the abbreviation 

.=U ( - 1 ) ” ’ k  exp[- t (m,+$)~E] ( 5 1 )  

( { m } l ( Q k + D k / 2 ) 2 ” + ’ l { m } ) = 0  ( 5 2 a )  

k 

has been used. We now turn to the regular, which is ‘non-overlap’, integrals, 

In this way the energy expectation value of the transformed Hamiltonian (44) is found 
to be 

({ ?n}lg(p)I{ m})  = ++ c nkak 2 
k 

where the abbreviations 

have been used. 
We mention that the hierarchical device used in this section for the many-mode 

case ( N  >> 1, namely (3a, b ) )  also may be fruitfully applied to the matrix elements of 
other operators, and also in the non-diagonal situation { m} f { n}. 

Astonishingly enough the one-mode version of the expectation values and matrix 
elements cannot be given in a similarly simple closed form. Thus, the single-mode 
version of ( 5 3 )  is written in its series representation 

( m /  m )  = E‘,“’ + ipA( -1)“‘ exp( -D2/4)L, ( D 2 / 2 )  

+ia2R + a2D2n[+( m +i) + ( D / 2 ) * ] + i p A a D +  0 ( A 3 )  (53a)  
which is derived from (44a). 
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6. Ground-state minimisation 

There are several possibilities of finding criteria for the 'goodness' of a unitary 
transformation. The most straightforward criterion is the decrease of the ground state 
of the diagonal part of the transformed Hamiltonian. From (53) we derive for the 
ground state 
E A P )  = E ( 0 )  + 1 fi 2 

0 2 k a k  
k 

+ipAexp( -c(D: /4+a:) )  k + C l ( $ ) .  

Minimisation with respect to (Yk evolves in 

-pd exp( -e (D$/4+ a&) 
k' 

+o (it-> - =o. (57) 

From this equation the coefficients ak may be determined for any value of the transitive 
coupling constant A. There is no practical difficulty in performing this computation 
if the distribution of phonon coupling constants Dk is known. We will not pursue this 
further at this place, but turn to the one-mode case, since it will be interesting to find 
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out whether we are able to reproduce results ( 2 1 )  and (23). From (53a) the one-mode 
version of the ground state is found to be 

ELP’ = E P ’ + f p A  e-D2’4+ffla2{l + D2[(2+ ( f D ) 2 ] } + $ p A a D + 0 ( A 3 ) .  ( 5 6 ~ )  

Minimisation with respect to a yields 

an = - f p A D { l +  D 2 [ ~ + ( $ D ) 2 ] } - i + 0 ( A 2 ) .  

Inserting this in (56a) we find 

EbP) = E ( ” ) + -  , : p A  exp( - D 2 / 4 )  -:- D ) 2 ( 1  + D’[j + ( fD’)’]}-’  + O(A3).  ( 5 8 )  n 
Comparing this with results (21) and (23) we observe that the exact second-order 
results are reproduced in both limiting cases D2 << 1 and D’ >> 1 .  Thus our transformation 
is ‘good’ for the ground state. 

7. Measures of non-diagonality 

A possibility to optimise the transformation with respect to excited states would be 
the minimisation of the free energy. For this and similar procedures we refer to a 
forthcoming book by the author (1985). 

Here we want to introduce an even more specific variational procedure for the 
excited states. If we, quite generally, have a Hamiltonian of the form 

H = H , + W  (59 )  

and consider the ‘non-diagonality’ of a state {la),  E?’} of H,, we may characterise the 
non-diagonality by 

where {I@), E:)} are the other eigenstates of Ho. The closure property then yields 

( 6 0 ~ )  M(nd) = 
a (aIW’la)-(aIWla)’. 

We also may define the ‘mean position’ p(,nd) of the non-diagonality by 

p(,nd’= (MFd’)-’ I(al Wl/3)12Ef’ 
@(+a) 

= ( Mpd’)-’(( WHO WJa)-E:’(al Wla)2) (61) 

and the ‘mean deviation’ from pFd) by 

8(nd)*  a + p F d ) 2  = ( M y ) ) - ’  c E p Z ] ( a 1  WlP)I’ 
@(#a) 

Let us consider these quantities for our original Hamiltonian (9 ) ,  for which we choose 
Ho = HL + HD. Then we arrive at 

Mi:; = (+PA)’( 1 -U’) (63) 
which in the strong-coupling case X k  D: >> 1 reads 

 PA)^ 
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with its extrema1 coupling forms 

/Lizd;= Ei0 , ) }+fc  for C >> 1 
k 

with its special versions 

( 8ikd)))2 = c niD’,( 1711, +f) for 0: >> 1 
k k 

The mean position gi”m4) of the non-diagonality indicates whether energetically far off 
states are more strongly coupled to each other than energetically adjacent ones. From 
(64) we conclude that, in particular in the strong phonon coupling case ( x k  0: >> l ) ,  
each state { m }  displays its dominant matrix elements to energetically elevated states, 
El:\> ElO,)}. 

In  contrast we now look at the transformed Hamiltonian (44), choosing 

Also in this case the evaluation of the ‘measures of non-diagonality’ does not pose 
any difficulty, provided we employ again hierarchical arguments in the way indicated 
in the preceding section. We then obtain 
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We now introduce as a criterion for an  optimal choice of the transformation the 
requirement 

shq;y = 0 (68 )  

or specifically, in our case 

(a/aak)n;lt;d,) = 0. (69 )  

Applying this to (67 )  we find 

Inserting it in (67 )  we have 

with its extremal coupling versions 

nii;d/=(tpA)'+(e k D ; ( m k + i ) ) 2  f o r e  k o;<< 1.  (716)  

We now compare (710)  and (71b)  with the corresponding ones for the untransformed 
Hamiltonian (namely ( 6 3 a ) ,  ( 6 3 6 ) ) .  We observe that in both extremal coupling cases 
the non-diagonality has been drastically reduced. In the strong coupling case ( x k  0: >> 1 )  
we get an inverse dependence an zk D:(mk +i) in place of a constant, whereas in the 
weak coupling case ( x k  D: << 1) we find proportionality to [ x k  D:( mk +f))' in place of 
one to x k  D ; ( m k + f ) .  

We also briefly present the results for the one-mode case. If we perform the step 
by step analogues of those above, we find for the non-transformed Hamiltonian 

for D2 << 1. ( 7 2 b )  M ( n d ) =  1 
m ( ~ p A ) ' D ~ ( m + f )  

In contrast we get for the transformed Hamiltonian 

$',"d)= (zpA)2{1 1 - exp[-D'( m ++)I} + p A a n D (  m +$+aD2) 

+ (an)'( m + f + D2($m2 + $m + $) + $D4( m + 4) + &D4) + O( A3) (73 )  
from which, after applying the variation (68 ) ,  
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or 

afl= -2pA/D3 

Lyfl = -;PAD 

for D2 >> 1 

for D2<c 1. 

Inserting this back in (73 )  leads to 

G(mnd) = (&PA)’( 1 - exp( -D2( m + f)) 

(75 )  
(m + f + !D2)2 

[ m +f + D2($m2 +$m +;) +lo4( m +$) +&D6] 
- D2 

or 

( fpA)’20(m +f)/D’ for D2 >> 1 ( 7 5 a )  

(75b)  f i Z d )  = ($PA)’ :D4( m2 + m + 1) for D2<c 1. 

Comparing the last two formulae with (72a, b )  we recognise again the drastic diminution 
of the non-diagonality. Having a closer look at the transformation parameter a we 
observe that the ‘non-diagonality’ variational principle (68 )  yields a different expression 
for a f l  (namely (72)) than the minimisation of the ground-state energy (namely ( 5 7 a ) ) .  
However, in the limiting cases they respectively become coincident. 

8. Other reflective transformations 

Up to this point we have concentrated on the specific form (41) for the exponent of 
the reflective transformation. Other forms have not been discussed in any detail up 
to now. We briefly mention some suggestive other forms. 

(a) The momentum analogue of (41) is given by 

( ( Y k  real), and yields 

Yet one may have some doubts whether this transformation is more suitable than the 
form (41), since the reflected part of the wavefunction turns purely imaginary and thus 
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cannot compensate the effect of W, 

(b) The lowest power 'even' exponential form 

S = iaG, U=cosa+ i ( s in  a)G,  a real 

has the effect 

T :  P t =  Pi 

T : Q ; = Q :  

T :  Qk =(cos 2aG-i sin 2a)Q 

T :  G =  G. 

(78)  

(79)  

Again, in U@'"' the reflected part is purely imaginary and thus cannot compensate 
the effect of W. 

(c) The second power ('even') exponential forms involve the combinations, iPkPk,G, 
iQkQk,G, i PkQk,G, from which only the last produces non-imaginary reflections, 

( k # k ' )  

and thus 

( k ' # k " )  

This transformation stands a good chance of playing a major role, since it has some 
capacity to remove the coupling between energetically close lying states, if, for instance, 
one chooses f f k k '  - (a, - a k r ) - ' .  Thus it is  a kind of counterpart to our transformation 
(41), which removes the non-diagonality between energetically distant states. 

(d) From the third power forms the peculiar one 

seems to offer a chance, if combined with the form (41) ,  to improve the diagonalisation 
capacity of the latter. 
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9. Summary 

Stimulated by the desire to avoid conventional techniques in the theory of quantum 
diffusion (‘golden rule’) we have introduced a class of unitary transformations with a 
reflective ingredient. We have discussed the most simple of these transformations in 
some detail, and we have shown that in the many-mode case ( N  >> 1) hierarchical 
relations can be used to evaluate multimode matrix elements of fully transformed 
operators in a closed form, which is more than what can be done in the one-mode case. 

Thereupon we have considered the ground state of the diagonal part of the 
transformed Hamiltonian and have minimised it with respect to the transformation 
parameters. In the one-mode case the perturbation theory result is known, whence 
our result could be compared with it. It turned out that the perturbative result was 
reproduced in both extrema1 phonon coupling cases D 1. In particular it was shown 
that in the second-order lowering of the ground state the Debye-Waller screening was 
absent. 

Since the ground state lowering is not a good overall criterion for the diagonalising 
capacity of a transformation, we have defined a positive definite measure of non- 
diagonality for each single base vector of a system. This being done, we have introduced 
a new variational principle for the optimisation of a unitary transformation, and we 
have applied this principle to our transformation. This allowed for the calculation of 
the transformation parameters. It then turned out that the ‘measure of non-diagonality’ 
was drastically reduced. Specifically, in the strong phonon coupling case ( D2 = Zk 0; >> 
1) it was reduced from a Do to a D-2 behaviour, whereas in the weak coupling regime 
(D2<< 1) the reduction was from D2 to D4. 

Finally, we have briefly glanced at a few other special forms of the introduced class 
of reflective transformations. 

It seems that the main virtue of the special form considered here in detail lies in 
its capacity to remove the domination of non-diagonal matrix elements between states 
which are energetically far away from each other in favour of an energetic neighbour- 
hood coupling. However, the coupling of a state to its energetic neighbourhood is 
modified in this manner, and it is this modified coupling distribution which will govern 
the quantum diffusion. This decay process itself seems to be treatable by means of 
another special form of the presented class of reflective transformations, but a more 
detailed discussion is postponed. 
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